推荐十大正规网赌网站

陈 煜


理学博士,南京大学,2006.09-2009.02

教授 (博导),陕西师范大学,2015.12-至今

Tel: 029-81530728

E-mail: ndchenyu@gmail.com

Office:致知楼2436

Lab: 致知楼2526-2527


招生专业:无机化学、材料物理与化学、材料学



目前主要从事结构功能纳米材料的设计合成及其在化学/电化学能量转换技术方面的工作。

(i) 高性能低温燃料电池阴/阳极贵金属纳米晶电催化剂的设计合成。

(ii) 高分子聚合物-贵金属纳米晶有机-无机复合材料的界面结构-催化活性相互关系研究。

(iii)原子厚超薄二维过渡金属/贵金属纳米材料的设计合成及其在水电解池、氮气电化学还原和化学产氢领域中的应用。

(iv)碳材料在金属空气电池和水电解池领域中的应用。

《Journal of Energy Chemistry》客座编辑、《Chinese Journal of Catalysis》客座编辑、《Chinese Chemical Letters》期刊青年编委、《Frontiers in Nanotechnology》期刊 Review Editor。

科技部、教育部、国家自然科学基金委和多省科技厅科研项目/人才计划函评/会评专家。

Advanced Energy MaterialsAdvanced MaterialsAngewandte Chemie International EditionNature CommunicationsJournal of the American Chemical SocietyACS CatalysisACS Energy LettersACS Central ScienceSmallJournal of Materials Chemistry AChemical ScienceNano EnergyApplied Catalysis B-Environmental等期刊审稿人。

近年主持国家自然科学基金3项和江苏/陕西省自然科学基金4项、获2021年陕西高等学校科学技术奖二等奖(排名第一)1项、获授权中国发明专利20

入选2019年英国皇家学会TOP1%高被引中国作者(能源领域)。

入选斯坦福大学发布的2020年全球前2%顶尖科学家(World’s Top 2% Scientists2020)榜单(energy领域)

作为通讯作者在Journal of Energy Chemistry、Angewandte Chemie International Edition、Advanced Energy Materials、Advanced Functional Materials、Advanced Science、Chemical Science、ACS Catalysis、Nano Energy、NPG Asia Materials、Applied Catalysis B-Environmental、Small、Journal of Materials Chemistry A等能源/材料期刊发表SCI论文140余篇(包括邀请综述及封面论文),其中影响因子大于10论文50篇。截止目前,论文被Chemical Reviews, Chemical Society Reviews, Nano Today等期刊正面引用评价8800余次,论文H-index为54,19篇论文被评为全球ESI高被引(1%)论文。多项研究成果被ChemistryViews、Materials Views-China、Chemistry World、X-MOL、能源学人、催化计和材料人资讯平台等多个国内外媒体亮点报道。合作编辑《Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies》2章。

博士:独立/联合培养已毕业博士6名,4人获国家奖学金,2人已取得高级职称(含江苏省特聘教授1名)。

硕士:独立/联合培养已毕业硕士14名,6人获国家奖学金,12人进入清华、复旦、天大、南开等高校继续攻读博士学位。

  1. Au@Ir core-shell nanowires towards oxygen reduction reaction. Chemical Engineering Journal 2021, 421, 129760.

  2. PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis. Journal of Materials Chemistry A 2021, 9, 8444.

  3. Highly active hollow RhCu nanoboxes toward ethylene glycol electrooxidation. Small 2021, 17, 2006534

  4. Porous Pd-PdO nanotubes for methanol electrooxidation. Advanced Functional Materials 2020, 30, 2000534.

  5. Conductive metal-organic frameworks with extra metallic sites as efficient electrocatalyst for hydrogen evolution reaction. Advanced Science. 2020, 7, 202000012.

  6. Au@Rh core-shell nanowires for hydrazine electrooxidation. Applied Catalysis B: Environmental 2020, 278, 119269.

  7. Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting. Applied Catalysis B: Environmental 2020, 270, 118880.

  8. Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Applied Catalysis B: Environmental. 2020, 268, 118393.

  9. Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation. Applied Catalysis B: Environmental. 2020, 265, 118567.

  10. Hierarchical porous Rh nanosheets for methanol oxidation reaction. Applied Catalysis B: Environmental. 2020, 264, 118520.

  11. Nitrogen-doped phosphorene for efficient electrocatalysis. Journal of Materials Chemistry A 2020, 8, 15875.

  12. Salt-templated construction of ultrathin cobalt doped iron thiophosphite nanosheets for electrochemical ammonia synthesis. Small 2019, 15, 1903500.

  13. Rh nanoroses for isopropanol oxidation reaction. Applied Catalysis B: Environmental 2019, 259, 118082.

  14. Ruthenium(iii) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. Journal of Materials Chemistry A 2019, 7, 25433-25440.

  15. Glycerol oxidation assisted electrocatalytic nitrogen reduction: Ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflakes nanoaggregates. Journal of Materials Chemistry A 2019, 7, 21149.

  16. Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting. Journal of Materials Chemistry A 2019, 7, 20658.

  17. Atomically ultrathin RhCo alloy nanosheet aggregates for efficient water electrolysis in broad pH range. Journal of Materials Chemistry A 2019, 7, 16437.

  18. Two-dimensional graphdiyne analogue Co-coordinated porphyrin covalent organic framework nanosheets as a stable electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A 2019, 7, 5575.

  19. Polyethylenimine-modified nickel phosphide nanosheets: interfacial protons boost the hydrogen evolution reaction. Journal of Materials Chemistry A 2019, 7, 13770.

  20. Porous trimetallic PtRhCu cubic nanoboxes for the ethanol electrooxidation. Advanced Energy Materials 2018, 8, 1801326.

  21. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angewandte Chemie International Edition 2018, 130, 7775.

  22. Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction. Nano Energy 2018, 54, 238.

  23. Au nanowires@Pd-polyethyleneimine nanohybrids as highly active and methanol-tolerant electrocatalysts towards oxygen reduction reaction in alkaline media. ACS Catalysis 2018, 8, 11287.

  24. Pd-Sn bimetallic nanocrystals for efficient H2O2 production: The influence of Sn on structure evolution and catalysis. ACS Catalysis 2018, 8, 3418.

  25. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catalysis 2018, 8, 1913.

  26. Interfacial proton enrichment enhances proton-coupled electrocatalytic reactions. Journal of Materials Chemistry A 2018, 6, 17771.

  27. From monometallic Au nanowires to trimetallic AuPtRh nanowires: Interface control for the formic acid electroxidation. Journal of Materials Chemistry A 2018, 6, 17164.

  28. Surfactant-free atomically ultrathin rhodium nanosheets nanoassemblies for efficient nitrogen electroreduction. Journal of Materials Chemistry A 2018, 6, 3211.

  29. Selective etching induced synthesis of hollow Rh nanospheres electrocatalyst for alcohols oxidation reactions. Small 2018, 14, 1801239.

  30. Polyallylamine functionalized platinum tripods: Enhancement of hydrogen evolution reaction by proton carriers. ACS Catalysis 2017, 7, 452.

  31. Bimetallic AuRh nanodendrites consisting of Au cores and atomically ultrathin Rh nanoplate shells: Synthesis and light-enhanced catalytic activity. NPG Asia Materials 2017, 9, e407.

  32. Polyethyleneimine functionalized platinum superstructures: Enhancing hydrogen evolution performance by morphological and interfacial control. Chemical Science 2017, 8, 8411.

  33. A microribbon hybrid structure of CoOx-MoC encapsulated in N-doped carbon nanowire derived from MOF as efficient oxygen evolution electrocatalysts. Small 2017, 13, 1702753.

  34. Morphological and interfacial control of platinum nanostructures for electrocatalytic oxygen reduction. ACS Catalysis 2016, 6, 5260.

  35. Sandwich-structured Au@polyallylamine@Pd nanostructures: tuning electronic property of Pd shell for electrocatalysis. Journal of Materials Chemistry A 2016, 4, 12020.

  36. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824.

  37. Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Materials 2015, 7, e219.

  38. Polyethyleneimine-assisted synthesis of high-quality platinum/graphene hybrids: the effect of molecular weight on electrochemical properties. Journal of Materials Chemistry A 2015, 3, 12000.

  39. Ethanol-tolerant polyethyleneimine functionalized palladium nanowires in alkaline media: the "molecular window gauze" induced the selectivity for the oxygen reduction reaction. Journal of Materials Chemistry A 2015, 3, 21083.


最近更新时间:2020-05-16 17:50 点击量:[] 次


扫描此二维码手机上查看当前信息